$$
\text { I(a) } \begin{aligned}
I & =m v-m u \\
& =m(v-u) \\
& =2(2 i-3 j-3 i-4 j) \\
& =2(-i-7 j) \\
& =-2 i-14 j \\
|I| & =\sqrt{(-2)^{2}+(-14)^{2}} \\
& =\sqrt{200} \\
& =\sqrt{2 \times 10^{2}} \\
& =10 \sqrt{2} \\
& =14.142 \ldots
\end{aligned}
$$

$$
\therefore|I \underset{\sim}{I}| \approx 14.1 \mathrm{NS} \text { (3 SF) }
$$

$$
\begin{aligned}
|u| & =\sqrt{3^{2}+4^{2}} \\
& =\sqrt{25} \\
& =5
\end{aligned}
$$

scalar product of I and $\underset{\sim}{\sim}$:

$$
\begin{aligned}
\underset{\sim}{I} \cdot u & =\binom{-2}{-14} \cdot\binom{3}{4} \\
& =-2(3)+4(-14) \\
& =-62 \\
\cos \theta & \left.=\frac{I}{T} \cdot \frac{u}{\mid I}| | u \right\rvert\, \\
& =\frac{-62}{10 \sqrt{2}(5)} \\
& =-\frac{31 \sqrt{2}}{60} \\
\theta & =\arccos \left(-\frac{31 \sqrt{2}}{50}\right) \\
& =151.26 \ldots \\
\therefore \theta & \approx 151 .(3 \mathrm{sf})
\end{aligned}
$$

2. $x=(t-2)(3 t-10)$
$=3 t^{2}-10 t-6 t+20$
$=3 t^{2}-16 t+20$
(a) $\underset{\sim}{a}=\frac{d x}{d t}=2(3) t-16$

$$
=6 t-16
$$

when $t=3$,
$\begin{aligned} \underset{\sim}{a} & =6(3)-16 \\ & =18-16\end{aligned}$
$\therefore \underset{\sim}{a}=2 \mathrm{~ms}^{-2}$
(b) when $x=0$,
$(t-2)(3 t-10)=0$
$t=2$ or $t=\frac{10}{3}$

Distance travelled in the first 3 s
$=\int_{0}^{2}\left(3 t^{2}-16 t+20\right) d t+\int_{2}^{3}\left|3 t^{2}-16 t+20\right| d t$
$=\left[\frac{3 t^{3}}{3}-\frac{16 t^{2}}{2}+\frac{20 t}{1}\right]_{0}^{2}+\left[\left|t^{3}-8 t^{2}+20 t\right|\right]_{2}^{3}$
$=\left[2^{3}-8(2)^{2}+20(2)-0\right]+\left[\left|3^{3}-8(3)^{2}+20(3)-16\right|\right]$
$=16+|15-16|$
$=16+|-1|$
$=16+1$

$$
=17 \mathrm{~m}
$$

(c) $\underset{\sim}{x}=\int\left(3 t^{2}-16 t+20\right) d t$

$$
=t^{3}-8 t^{2}+20 t+C
$$

when $t=0, x=0$,
$0=c$
$\therefore \underset{\sim}{x}=t^{3}-8 t^{2}+20 t$

$$
\begin{aligned}
& \underset{\sim}{x}=t^{3}-8 t^{2}=t\left(t^{2}-8 t+20\right)
\end{aligned}
$$

when $\underset{\sim}{x}=0$,
$t=0$ or $t^{2}-8 t+20=0$
$b^{11}-4 a c<0 \Rightarrow \begin{gathered}\text { rots are complex, hence } \\ P \text { does not return to } 0 \text {. }\end{gathered}$
3.

560 g
(a) On horizontal road,

$$
\begin{gathered}
R(\rightarrow): F-R=0 \\
F=R
\end{gathered}
$$

$P=F v$
$P=R \times 30$
$=30 R$
On slope.
$R(\lambda): F-550 g \sin \theta-R=0$
$F=550 \mathrm{~g} \sin \theta+R$
$=\frac{5509}{14}+R$
$P=F v$

$$
\begin{aligned}
& =\left(\frac{5609}{14}+R\right)(25) \\
& =(385+R)(25) \\
& =9625+25 R
\end{aligned}
$$

(i) $30 R=9625+25 R$

SR =962S
$R=1925$
$\therefore R \approx 1930 \mathrm{~N}$ (3 SF)
(ii) $P=30 R$
$=30 \times 1925$
$=57750 \mathrm{~W}$
$=57.75 \mathrm{~kW}$
$\therefore P=57.8 \mathrm{~kW}$ (3 SF)

$P=F V$
$50000=F(20)$
$\therefore F=2500 \mathrm{~N}$
$R(\rightarrow): F-R=550 a$
$2500-1925=550 a$
$a=\frac{575}{550}$
$=\frac{23}{22}$
$=1.0454 \ldots$
$\therefore a \approx 1.05 \mathrm{~ms}^{2}(3 \mathrm{sF})$
4.

let mass/area be ϕ
Area of $\triangle A C D=\frac{1}{2}(4)(h)$

$$
=2 h
$$

Considering $\triangle A B E$,
$\sin C 0^{\circ}=\frac{B E}{4}$
$B E=4 \times \frac{\sqrt{3}}{2}$

$$
=2 \sqrt{3} \mathrm{~m}
$$

Area of $\triangle A B C=\frac{1}{2}(4)(2 \sqrt{3})$

$$
=4 \sqrt{3} \mathrm{~m}^{2}
$$

Shape	Mass	Mass ratios	Distance of COM $A C$
$\triangle A B C$	$4 \rho \sqrt{3}$	$2 \sqrt{3}$	$\frac{2 \sqrt{3}}{3}$
			$\frac{h}{3}$
$\triangle A C D$	$2 \rho h$	h	h

$$
\begin{aligned}
& M_{(A):}:(2 \sqrt{3}-h)(h)=2 \sqrt{3}\left(\frac{2 \sqrt{3}}{3}\right)-h\left(\frac{h}{3}\right) \\
& 2 h \sqrt{3}-h^{2}=4-\frac{h^{2}}{3} \\
& 0=4-2 h \sqrt{3}+h^{2}-\frac{h^{2}}{3} \\
& \frac{2 h^{2}}{3}-2 h \sqrt{3}+4=0 \\
& 2 h^{2}-6 h \sqrt{3}+12=0 \\
& h^{2}-3 h \sqrt{3}+6=0 \\
& h=\frac{3 \sqrt{3} \pm \sqrt{(3 \sqrt{3})^{2}-4(1)(6)}}{2(1)} \\
&= \frac{3 \sqrt{3} \pm \sqrt{3}}{2}, \quad \therefore=2 \sqrt{3} \quad \text { or } \sqrt{3} \quad \therefore h=\sqrt{3} \quad[\because h<2 \sqrt{3}]
\end{aligned}
$$

(b)

$\sin 30^{\circ}=\frac{\rho G}{h}$

$$
D G=\frac{1}{2} \sqrt{3}
$$

$M_{(A)}{\underset{\text { tve }}{ }}: 4 F-\frac{W}{2} \sqrt{3}=0$
$4 F=\frac{W}{2} \sqrt{3}$
$\therefore F=\frac{W}{8} \sqrt{3} \mathrm{~N}$

(a) $M(D) O_{t v e}: 2 a f-m g a \sin \theta=0$

$$
2 a F=m g a \sin \theta
$$

$$
2 F=m g \sin \theta
$$

$$
\therefore F=\frac{1}{2} m g \sin \theta
$$

(b) $M_{(c)} \bigcup_{\text {tre }}: \frac{4 a}{3} R \sin \theta-\left(\frac{4 a}{3}-a\right) m g \sin \theta-\frac{4 a}{3} F \cos \theta=0$

$$
\begin{aligned}
& \frac{4 a}{3} R \sin \theta-\frac{a}{3} m g \sin \theta=\frac{4 a}{3} f \cos \theta \\
& \frac{\alpha}{3} \sin \theta(4 R-m g)=\frac{4 a}{3} \times \frac{1}{2} m g \sin \theta \cos \theta \\
& 4 R-m g=2 m g \cos \theta \\
& 4 R=m g+2 m g \cos \theta \\
& \therefore R=\frac{m g}{4}(1+2 \cos \theta)
\end{aligned}
$$

(c) $F=\mu R$
$\frac{1}{2} m g \sin \theta=\frac{\mu \pi g g}{4}(1+2 \cos \theta)$
$2 \sin \theta=\mu(1+2 \cos \theta)$
$\underbrace{5}_{3}$
$2\left(\frac{4}{5}\right)=\mu\left[1+2\left(\frac{3}{5}\right)\right]$
$\frac{8}{5}=\frac{11 \mu}{5}$
$11 \mu=8$
$\therefore \mu=\frac{8}{11}$

- $(3 i+v j) m s^{-1}$

(a) Conservation of energy:

$$
\begin{aligned}
& K E_{0}=K E_{A}+P E_{A} \\
& E=\frac{1}{2} E+P E_{A} \\
& \frac{1}{2} E=P E_{A} \\
& R(T): v=u+a t \\
& V_{A}=v-g E \\
& \text { velocity at } A \text { is } 3 i+(v-g t)-j
\end{aligned}
$$

$$
\begin{aligned}
& K E_{0}=2 K E_{A} \\
& \frac{1}{2} m\left(\sqrt{3^{2}+v^{2}}\right)^{2}=\frac{1}{2} m(2)\left(\sqrt{3^{2}+(v-g t)^{2}}\right)^{2}
\end{aligned}
$$

$$
K E_{0}=2 K E_{A}
$$

$$
\begin{aligned}
& \frac{1}{2} m\left(\sqrt{3^{2}+v^{2}}\right) \\
& 3^{2}+v^{2}=2\left(3^{2}+(v-g t)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 3^{2}+v^{2}=2\left(3^{2}+(v-g t)^{2}\right) \\
& 9+v^{2}=18+2\left(v^{2}-2 g+v t^{2} t^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 9+v^{2}=18+2\left(v^{2}-29\right. \\
& 9+v^{2}=18+2\left(v^{2}-2 g v\left(\frac{15}{49}\right)+\left(\frac{15}{49} 9\right)^{2}\right)
\end{aligned}
$$

$$
9+v^{2}=18+2 v^{2}-12 v+19
$$

$$
\Rightarrow v^{2}-12 v+27=0
$$

$$
\begin{aligned}
& (v-3)(v-9)=0 \\
& \therefore v=9 \mathrm{~ms}^{-1} \quad(\because v>3)
\end{aligned}
$$

(b) $R(t): y=u+a t$

$$
=9-9\left(\frac{15}{49}\right)
$$

$$
=6
$$

The ball moves downwards at B,

$$
\begin{aligned}
\therefore v_{B} & =-6 \mathrm{~ms}^{-1} \\
R(t): v & =u+a t \\
-6 & =9-9 t \\
-15 & =-g t \\
t & =\frac{15}{9} \\
t & =\frac{75}{49}=1.5306 \ldots \\
\therefore t & \approx 1.53 \mathrm{~s}(3 \mathrm{SF})
\end{aligned}
$$

7. (a)

$\operatorname{PCLM}(\rightarrow):$

$$
\operatorname{Th}(5 u)+\operatorname{hh}(-4 u)=\operatorname{hi} v_{A}+\phi v_{B}
$$

$$
5 u-4 u=v_{A}+v_{B}
$$

$$
\begin{equation*}
\therefore v_{A}+v_{B}=u \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { NEL }(\rightarrow): \\
& e=\frac{v_{B}-v_{A}}{5 u+4 u} \\
& \therefore-v_{A}+v_{B}=9 u e \tag{11}
\end{align*}
$$

(i)

$$
\begin{aligned}
& \text { (1) } \Rightarrow v_{A}+v_{B}=u \\
& \text { (1) } \Rightarrow \frac{-v_{A}+v_{B}=q u e}{2 v_{A}=u-q u e} \\
& \Leftrightarrow v_{A}=\frac{u}{2}(1-9 e) \\
& \therefore\left|v_{A}\right|=\left|\frac{u}{2}(1-9 e)\right| \mathrm{ms}^{-1}
\end{aligned}
$$

(ii)
(1) $\Rightarrow y_{i}+v b=u$
(1) $\Rightarrow \frac{-v_{A}+v b=9 u e}{2 v_{B}=u+9 u e}$

$$
\therefore V_{B}^{D}=\frac{u}{2}(1+q e) \mathrm{ms}^{-1}
$$

(b) dirn of A is reversed $\Rightarrow V_{A}<0$

$$
\begin{gathered}
\frac{u}{2}(1-9 e)<0 \\
1-9 e<0 \\
1<9 e
\end{gathered}
$$

