

121=
$$\sqrt{3^2+4^2}$$

= $\sqrt{25}$
= 5

scalar product of I and w:

$$\underline{\mathbf{T}} \cdot \mathbf{x} = \begin{pmatrix} -2 \\ -14 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

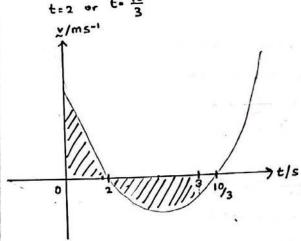
$$\cos \Theta = \frac{\overline{I} \cdot \overline{\mu}}{|\overline{I}||\overline{\mu}|}$$

$$= \frac{-62}{1042(5)}$$

$$= -\frac{3142}{1042}$$

2.
$$\chi = (t-2)(3t-10)$$

= $3t^2-10t-6t+20$
= $3t^2-16t+20$



Distance travelled in the first 35

$$= \int_{0}^{2} (3t^{2} - 16t + 20) dt + \int_{2}^{3} |3t^{2} - 16t + 20| dt$$

$$= \left[\frac{3t^{3}}{3} - \frac{16t^{2}}{2} + \frac{20t}{1} \right]_{0}^{3} + \left[|t^{3} - 8t^{2} + 20t| \right]_{2}^{3}$$

$$= \left[2^{3} - 8(2)^{2} + 20(2) - 0 \right] + \left[|3^{3} - 8(3)^{2} + 20(3) - 16 \right]$$

(c)
$$x = \int [3t^2 - 16t + 20] dt$$

= $t^3 - 6t^2 + 20t + C$
when $t=0$, $x=0$,

b2-4ac <0 => P does not return to O.

b

2 m

2 m

Considering DABE,

Shape	Mass	Mass ratios	Distance of COT
AABC	41/43	2√3	2/3
ΔACD	21h	. h	<u>h</u>
AB CD	41/13 -29h	2√3 -h	h

= 4√3 m²

$$M_{(A)}: (2\sqrt{3}-h)(h) = 2\sqrt{3}(\frac{2\sqrt{3}}{3}) - h(\frac{h}{3})$$

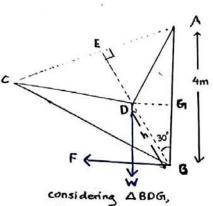
$$0 = 4 - 2h\sqrt{3} + h^2 \cdot \frac{h^2}{3}$$

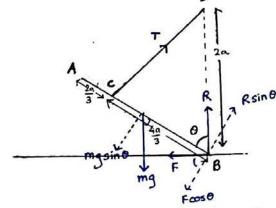
$$\frac{2h^2}{3} - 2h\sqrt{3} + 4 = 0$$

$$h = \frac{3\sqrt{3} \pm \sqrt{(3\sqrt{5})^2 - 4(1)(4)}}{2(1)}$$

$$= \frac{3\sqrt{3} \pm \sqrt{3}}{4\sqrt{3}}$$

5.





(b)
$$M(c)$$
 : $\frac{4a}{3}R\sin\theta - (\frac{4a}{3}-a) \text{ mgsin}\theta - \frac{4a}{3}F\cos\theta = 0$

$$\frac{4a}{3}R\sin\theta - \frac{a}{3}mg\sin\theta = \frac{4a}{3}F\cos\theta$$

$$\frac{4a}{3}\sin\theta (4R-mg) = \frac{4a}{3} \times \frac{1}{2}mg\sin\theta\cos\theta$$

$$\therefore R = \frac{m_9}{4} (1 + 2\cos\theta)$$

PMT

7. (a)

Before:
$$\frac{5u}{M}$$
 $\frac{4u}{M}$
 $\frac{3u}{M}$

After: $\frac{4u}{M}$
 $\frac{3u}{M}$
 $\frac{3u}{M}$
 $\frac{c}{M}$
 $\frac{c}{M}$

NEL (→):

(4)
$$2v_B = u + que$$

 $v_B = \frac{u}{2} (1 + qe) \text{ ms}^{-1}$

149e

no collision between B and C => Vc = VB

$$3u \ge \frac{1}{2} (1+9e)$$

 $6 \ge 1+9e$
 $5 \ge 9e$
 $\frac{5}{9} \ge e$

.: Possible values of e: